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Are There Pillars of Measurement?

R. J. De Ayala 
University of Nebraska – Lincoln

P r o f e s s o r  E n g e l h a r d ’s  P i l l a r s  o f 
Measurement (2022) demonstrates how Stigler’s 
(2016) The Seven Pillars of Statistical Wisdom 
relates to measurement and introduces two 
pillars specific to measurement. We adopt The 
Seven Pillars of Statistical Wisdom framework 
by using a historical perspective to understand 
and comment on the pillars of measurement. 
(In the following we bold and italicize Stigler’s 
pillars and italicize Engelhard’s.)

Psychological measurement has long been 
influenced by the work of statisticians (e.g., 
Allan Birnbaum, Francis Edgeworth, and Georg 
Rasch). Therefore, it is not surprising that 
Engelhard invokes the statistical pillars in his 
quest to establish measurement pillars. The use 
of statistical techniques in measurement has a 
long history. For instance, in 1888, Edgeworth 
applied the theory of errors in his work “The 
Statistics of Examinations.” In his “letter,” 
he reiterated that observations of measurable 
quantities (e.g., times, distances) were “blurred 
by a fringe of error and margin of uncertainty” 
(p. 600). We say “reiterated”  because the use 
of the mean to address error-laden observations 
had previously been done in other fields. 
For instance, although it may have certainly 

occurred earlier and in different fields, the first 
recorded instance of using the average of a 
set of measurements to address the errors in 
measurement appears to be by astronomers in 
the latter 1500s. Galileo noted that the errors in 
measurement were symmetrically distributed 
about their “true” value (Read, 1985, p 348). 
Thus, it was reasonable for astronomers 
interested in determining a characteristic of a 
celestial body (e.g., its location) to use the mean 
of their observations as the object’s distance. 
By accumulating (aggregation) these erroneous 
(independent) observations (Xs) and calculating 
the mean of the Xs astronomers were able 
to approximate the “true” celestial body’s 
characteristic (e.g., its location).

In  the  mid-1700s  S impson  us ing  a 
probabil is t ic  perspective and assuming 
independence of Xs (Simpson’s Supposition 1) 
showed that using the mean led to an overall 
reduction in error and thereby provided a 
justification for the astronomers’ approach. As 
such, the use of the mean was to be preferred 
to other approaches such as a carefully selected 
value. Therefore, despite errors in observed 
measurements one could use the mean to reduce 
the impact of these errors to obtain a better 
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estimate of, for instance, a planet’s location.

As an example, let us suppose we have 
n independent distance observations of a 
planet’s location (X1, X2, …, Xn). The mean of 
these values ( ) is our estimate of the planet’s 
location. Stated another way, we can fit a null 
(means) model to these data so our “best” 
prediction of the value for an observation ( ) 
is

β ,	 (1)

where β  is a constant equal to μ  and estimated 
by . The parameter μ  is the “true” location 
based on the fallible Xs over an infinite number 
of observations, that is, μ .

Following Galton’s work on regression, we 
can separate “permanent and transient effects” 
(Stigler, 2016, p. 131). Thus, we can separate 
the errors in the Xs from the “true” value by 
representing Xs′ fallibility as the deviation 
of an observed location (X) from its mean: 
ϵ μ  (i.e., the distance the observation is 
from the mean). The simplest statistical (linear) 
model that relates ϵ , X, and μ  is

β ϵ μ ϵ ϵ .	 (2)

In Equation 2, we have a sole parameter,  
β μ , the mean of an infinite number of 
error-laden independent observations. Not only 
does  reflect our uncertainty about the “true” 
value, but it also inversely reflects the lack of 
information we have about the characteristic 
of interest. Additionally, we can summarize 
the total variability in our n Xs and summarize 
the errors to reflect the total variability not 
accounted for by μ .

Returning to our planetary location 
example, it is important to note we can never 
know the planet’s true location relative to 
Earth at any given point in time because 
planets are not smooth, perfectly spherical, 
have elliptical orbits, parallax, a finite number 
of measurements,  and so forth.  Rather, 
conventions/standards are designed that define 
a framework within which the mean location is 
taken as a reasonable approximation of truth. It 

is the utility of the measured average location 
that is paramount. In short, the planet’s exact 
location is unobservable, but one may consider 
the average to be the planet’s “true” location 
within some small margin of error. Stated 
another way, we conceive of a latent location 
variable that has no error while recognizing that 
our observations contain error and thereby so 
does our estimate. Additionally, we are moving 
beyond the data at hand to infer the parameter’s 
location from an estimator .

Simpson’s work on the mean focused on 
errors. Similarly, Edgeworth’s work in testing 
focused on (random) errors. As part of his 
treatise, he argued that the distribution of these 
errors in testing could be expected to form a 
unimodal symmetric distribution shaped like 
a gensd’armes’ hat. That is, some deviations 
from the “true” value would be smaller and 
far more common than others, whereas others 
would be larger and rarer. Unlike our planet 
location example where X is not a composite, 
in Edgeworth’s presentation the observations 
were the examinee’s average summed scores 
across multiple examiner ratings across multiple 
assessment tasks. Nevertheless, one may utilize 
the model above (Equation 2) for examination 
data. Therefore, the model may be rewritten as 
the true score model

ϵ ϵ ,	 (3)

where X is a respondent’s observed score across 
assessment tasks (typically a sum score across 
item responses; an aggregation), ϵ  is a random 
error defined as ϵ (residual), and T is 
the respondent’s expected observed score across 
an infinite number of independent assessments, 
that is, , the respondent’s true score. 
Thus, the X we observe is conceptualized to be 
one of an infinite number of possible Xs that 
could have been observed for a respondent on a 
particular assessment with T as the mean of this 
theoretical distribution of Xs. Analogous to not 
being able to determine a planet’s true location, 
we can never know the true value of T. Because 
T is unobservable the error of measurement ϵ  is 
also unobservable. However, it is important to 
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note that the parameters in Equation 3 are not 
defined in terms of the real world (Lord, 1980) 
nor is the model falsifiable. Given  
the mean error for this theoretical distribution 
of Xs must be 0 and therefore across a group of 
examinees administered the same assessment 
the regression of ϵ  on T yields a coefficient of 
0 (Lord, 1980). (The regression pillar subsumes 
the correlational statistic that is at the heart 
of many psychometric classical concepts and 
techniques [e.g., reliability, validity coefficients, 
factor analysis].)

As easily demonstrated (see Wright, 1968), 
the Xs obtained on an assessment can be raised 
or lowered by manipulating the assessment. 
For example, in a proficiency context if we 
make the assessment comparatively easy 
relative to our examinees’ proficiencies the Xs 
will increase. As a result, the corresponding 
Ts will also increase. Therefore, Xs and Ts are 
not independent of the instrument used in their 
determination.

The implicit assumption in Equation 3 is 
that the J components that comprise the Xs 
measure a common characteristic and the 
ϵ s are unique. These components may differ 
from one another with respect to their means 
as well as how well they relate the Xs to the 
common (single) characteristic—the factor θ. 
Standardizing the Xs we can rewrite the model 
as

β β θ ϵ ,	 (4)

where β  is the mean of component j, β  
indicates the linear relationship between z 
and θ, θ is the respondent’s measure on the 
factor (i.e., a factor score), ϵ  is error (i.e., the 
respondent’s measure of the unique property 
of component j), and β θ. In this form, 
each of the components may vary in terms 
of their means. However, the use of β  rather 
than β  indicates that all components have 
the same relationship with θ (essentially tau-
equivalent). Equation 4 is a simple linear 
regression model. As such, it is an example of 
the generalized linear model using the identity 

link function. In a factor analytic context, 
Equation 4 is referred to as the common factor 
model. In this case, the regression coefficient(s) 
would be called factor loading(s) and would 
capture how well a component differentiates 
among respondents with respect to the common 
factor θ. If the components represent items, 
then a loading represents a component’s 
discrimination capability. (Recall we have 
assumed a constant loading in Equation 4; i.e., 
constant discrimination.) Moreover, because a 
factor score is a weighted linear composite then 
θ  represents an aggregate and is, as Engelhard 
states, a form of data reduction.

Looking at the systematic portion of 
Equation 4 (i.e., β β θ), considering the 
components to be items, dichotomous responses, 
setting β  to the constant 1 (for convenience), 
then the mean response across respondents for 
item j is its difficulty (β δ ) and we have

β β θ δ θ.	 (5)

Equation 5 has a parameter reflecting an 
individual’s location on the common factor 
(e.g., mathematics ability) and another reflecting 
item j’s location (e.g., difficulty, δ ). To 
establish a metric that would allow one to make 
intercomparisons assume, as Rasch (1960/1980, 
pp. 74–75) did, that there are two individuals 
one of whom has twice the ability of the other, 
θ θ , and there are two items such that one 
item is twice as difficult as the other, δ2 = 2δ1. If 
the second person correctly answers the second 
item and the first person correctly answers the 
first item, then the probabilities of a correct 
response should be the same. Moreover, this 
means that the probability of the response is a 
function of the ratio θ δ and not on the values 
of θ and δ separately. It is this characteristic 
ratio that allows for item-free measurement of 
θ. This is the essence of the invariance concept 
(Thorndike, 1904, 1912; Thurstone, 1926; also 
see Thurstone, 1925) that underlies IRT.

Engelhard appears to consider invariance 
to fall within Stigler ’s intercomparisons 
pillar. Stigler defines this pillar as “the idea 

that statistical comparisons may be made 
strictly in terms of the interior variation in the 
data, without reference to or reliance upon 
exterior criteria” (Stigler, 2016, p. 87). As 
an example, he refers to the use of standard 
errors. It is apparent that invariance allows for 
intercomparisons. However, intercomparisons 
occur when one compares individuals and/
or items within a given data set without 
reference to exterior criteria. Invariance allows 
these comparisons to transcend a given data 
set without an external frame of reference. 
Although invariance may be considered to be 
a form of intercomparisons, invariance is a 
psychometric fundamental principle that has 
“… supported our field in different ways in the 
past and promise[s] to do so in to the indefinite 
future” (Stigler, 2016, p. 2). In this regard, we 
consider invariance to be a measurement pillar 
in its own right.

According to Rasch (1960/1980, pp. 
74–75) the simplest function that he was aware 
that increases from 0 to 1 as θ δ increases is 
the logistic function. Thus, by substitution of 
Equation 5 into the logistic function we have 
the Rasch model for dichotomous responses:

θ δ
θ δ

θ δ
,	

	 (6)
where  is the response by a person to item 
j. Because the Rasch model is a logistic 
regression model it is a generalized linear 
model with the logit link. Additional variables 
may be added to the model that, under the right 
circumstances, could be explanatory variables. 
Equation 6 is an example of one member of 
the Rasch family of models. One may consider 
the Rasch family of models to be an attempt to 
establish a standard by which all measurements 
are obtained not unlike an astronomer’s creation 
of the astronomical unit, light year, or parsec 
for measuring distances. This idea of creating 
a measurement standard underlies other 
measurement approaches as well (e.g., Guttman 
Scalogram, Coombs Unfolding) and appears to 
be in Engelhard’s power pillar.

Because Equation 6 is a regression model 
it can be used to make model-based predictions 
that are compared to the observed data through 
residual-based indices. This residual analysis is 
used to diagnose the degree of correspondence 
(or lack thereof) between the model and the 
observed data. This diagnostic analysis might 
lead one to the realization that one does not 
have sufficient model-data correspondence (i.e., 
fit) to proceed. At first glance, this may appear 
to be a disadvantage of Equation 6. However, 
this is not the case. In fact, it is better to be able 
to identify a lack of congruence between the 
model and the data, than it is to continue with 
a model that is not falsifiable. Furthermore, 
residual analysis allows for model comparisons, 
such as a comparison of Equation 6 with a 
variant, such as the linear logistic test model.

The estimates of the parameters θ and δ 
are those values that are most likely to yield 
the observed responses. Thus, the likelihood 
pillar underlies almost all estimation procedures 
for both θ and δ as well as their corresponding 
estimation errors. This pillar is also reflected in 
the confidence intervals corresponding to the 
point estimates of θ and δ.

Whether or not the θ estimate is a measure 
of the construct of interest (validity) is affected 
by Stigler’s design pillar. This pillar includes 
“… the planning of observation generally, 
and the implications for analysis of decisions 
and actions taken in planning” (Stigler, 2016, 
p. 149). In the context of psychometrics, this 
pillar is represented in the process by which 
instruments are created and refined to sample 
behaviors. This process is represented in 
Engelhard’s design blocks and reflects part of 
the validation process.

Although Engelhard uses educational 
measurement “… as an illustrative area 
o f  m e a s u r e m e n t  p r a c t i c e ”  ( 2 0 2 2 ,  p . 
90) and presents his pillars in a section 
entitled ‘Distinctive Pillars of Educational 
Measu remen t ’ t he  focus  i s  on ,  a s  t he 
manuscr ip t ’s  t i t l e  s ta tes  (“The  Pi l la rs 
of  Measurement  Wisdom”)  d is t inc t ive 
measurement pillars. Stated another way and 
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given our focus, are Engelhard’s pillars of 
power and consequences of measurement found 
in non-educational measurement as well? The 
short answer is ‘yes.’

Engelhard, quoting Porter, states “The 
Latin root of validity means ‘power’ … it is 
important to consider the notion of validity as a 
type of power” and “tests become a key tool for 
guiding and enforcing issues related to power 
over individual and societal decisions” (2022, 
p. 91). There is no denying the veracity of the 
latter quote in educational measurement. The 
current conception of validity recognizes this.

Broadly stated, one may consider validity 
to be how well measurement-based inferences 
are supported by the measurements. The “how 
well” may be captured by the correlation 
between the measurements with some criterion/
criteria, what “may be properly inferred from 
a test score” (Brennan, 2006, p. 2), or by “… 
by the appropriateness, meaningfulness, and 
usefulness of the specific inferences made 
from the test scores” (American Educational 
Research Association [AERA] et al., 1974; 
cited in Brennan, 2006, p. 2). These definitions 
of “how well” reflect the evolution of validity 
over the past 100 years. Consequently, they 
subsume the predictive, content, and construct 
categories of validity (see Kane, 2006); the 
first two categories involve the regression 
pillar. We can see the concept has evolved from 
being somewhat solely statistically-oriented 
to a somewhat argument-based approach. 
That is, given an individual’s responses on an 
instrument we seek to claim that the measure 
(e.g., θ) reflects the individual’s position on the 
construct of interest (θ) regardless of whether 
this construct is, for example, their level of 
depression, generalized anxiety, or mathematics 
ability. In support of this claim our argument 
rests on obtaining evidence from test content, 
response processes, the instrument’s internal 
structure, and so on (AERA et al., 1999). 
Unlike earlier conceptions of validity, more 
recent perspectives emphasize that validity is a 
property of the interpretations and uses of the 
measurements and not of the instrument itself. 

θ

One might argue that the current perspective 
on validity is a response to public pressure 
for transparency and accountability given the 
power that measurements have to influence 
the decision-making process. Thus, validity 
is, in part, focused on the credibility of the 
measurement process.

The power pillar (i.e., “Power stresses the 
use of measures to define and construct the key 
constructs that are used to structure the world 
around us,” 2022, p. 93) appears to involve the 
philosophical argument concerning objective 
truth versus subjective truth. That is, this pillar 
appears to invoke the idea that our measures 
are used to create and support the existence of 
behavioral constructs. Historically, there have 
been measurement approaches that adopted 
a perspective that if the approach worked 
(within some degree of tolerance) then it was 
possible to measure the intended construct, 
otherwise not. In other words, simply because 
we conceive of a construct does not mean we 
are able to measure it. In contrast, an alternative 
perspective is we conceive of a construct and it 
is a given that an instrument can be designed to 
measure it. In either case, the validation process 
for our measures informs us whether we can 
legitimately argue that our measurements have 
utility (e.g., providing “structure [to] the world 
around us”). In short, it appears that the power 
pillar falls within the current conceptualization 
of validity. This is not meant to discount the 
importance of the power pillar conception but 
simply to place it within a larger context.

Engelhard defines the consequences 
pillar as “… the idea that measures are 
created to serve specific purposes, and that 
the consequences may be both posit ive 
and negative.” The issue of measurements’ 
social consequences can be found in Messick 
(1989) and Kane (2006). In psychological 
measurement, the measurements reflect both 
the individuals as well as the context within 
which the individuals provide their responses. 
Recognition of this led Messick (1989) to 
advocate considering the consequences of the 
measurements as part of the conceptualization 

of validity and the validation process. Messick’s 
(1995) consequential validity (an aspect of 
construct validity) reflects “value implications 
of score interpretation as a basis for action as 
well as the actual and potential consequences 
of test use, especially in regard to sources of 
invalidity related to issues of bias, fairness, and 
distributive justice” (p. 745). In this respect, 
the consequences pillar appears to fall within 
consequential validity aspect of construct 
validity. What is unique to (psychometric) 
validity is its focus on the consequences of the 
measurements. As mentioned above, Stigler 
(2016) considers a pillar to have supported the 
field in the past and to have the promise to do so 
into the indefinite future. Psychometric validity 
meets these criteria. Thus, one of the pillars of 
measurement is psychometric validity.

We endorse Professor Engelhard’s objective 
of identifying pillars of measurement. As 
such, it is important to ensure these pillars are 
not tied solely to educational testing, but that 
they underlie all psychological measurement 
regardless of whether the measurement is 
educationally focused, used for health-related 
purposes in the health sciences, in an industrial-
organizational setting, and so on. Clearly, 
some of the pillars of measurement are the 
same as the pillars in statistics. As mentioned 
above, we consider invariance to be a pillar of 
measurement. Although invariance could be 
seen to be nothing more than intercomparisons, 
the idea of freeing the measurements from the 
instrument used makes invariance uniquely 
different than intercomparisons. Invariance 
may also be considered as evidence in the 
validation process. For example, in differential 
item functioning it is the absence of invariance 
that indicates that members of one group (e.g., 
females) are being unfairly disadvantaged 
compare to another group (e.g.,  males). 
Thus, the instrument’s measurement may be 
determined to be biased and thereby adversely 
affect the validation process. Engelhard presents 
two pillars, power and the consequences of 
measurement, he considers to be distinct from 
the statistical pillars. We agree that power and 

the consequences of measurement are distinct 
from the statistical pillars. What is less clear to 
us is why these should be not considered to fall 
within the current conceptualization of validity. 
We believe the second pillar suggested above 
(i.e., validity) encompasses the power and 
consequences pillars.
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